RELEVANT PUBLICATIONS
1. Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis. KH Antunes, RT Stein, C Franceschina, EF da Silva, DN de Freitas, et al. EBioMedicine 77, 103891, 2022. [Google Scholar]
2. Does chromatin function as a metabolite reservoir?. VD Nirello, DR de Paula, NVP Araújo, PD Varga-Weisz. Trends in Biochemical Sciences, 2022. [Google Scholar]
3. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice. PB Rodrigues, GF Gomes, MKSC Angelim, GF Souza, SP Muraro, et al. Cells 11 (16), 2572, 2022. [Google Scholar]
4. Host lung microbiota promotes malaria-associated acute respiratory distress syndrome. D Mukherjee, ÂF Chora, JC Lone, RS Ramiro, B Blankenhaus, K Serre, et al. Nature communications 13 (1), 1-14, 2022. [Google Scholar]
5. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. LB Pascoal, PB Rodrigues, LM Genaro, ABSP Gomes, et al. Gut Microbes 13 (1), 1-9, 2021. [Google Scholar]
6. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. LP Pral, JL Fachi, RO Corrêa, M Colonna, MAR Vinolo. Trends in Immunology 42 (7), 604-621, 2021. [Google Scholar]
7. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. JL Fachi, LP Pral, JAC Dos Santos, AC Codo, S de Oliveira, JS Felipe, et al. Mucosal immunology 14 (4), 828-841, 2021. [Google Scholar]
8. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. JL Fachi, C Sécca, PB Rodrigues, FCP Mato, B Di Luccia, JS Felipe, et al. Journal of Experimental Medicine 217 (3), 2020. [Google Scholar]
9. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. R Fellows, P Varga-Weisz. Molecular metabolism 38, 100925, 2020. [Google Scholar]
10. Tributyrin attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. FT Sato, YA Yap, AR Crisma, M Portovedo, GM Murata, SM Hirabara, et al. Cells 9 (9), 2007, 2020. [Google Scholar]
11. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. J Kazakevych, J Denizot, A Liebert, M Portovedo, M Mosavie, P Jain, et al. Genome biology 21 (1), 1-20, 2020. [Google Scholar]
12. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. KH Antunes, JL Fachi, R de Paula, EF da Silva, LP Pral, AÁ Dos Santos, et al. Nature communications 10 (1), 1-17, 2019. [Google Scholar]
13. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. JL Fachi, J de Souza Felipe, LP Pral, BK da Silva, RO Corrêa, et al. Cell reports 27 (3), 750-761. e7, 2019. [Google Scholar]
14. Transcriptome analysis identifies a robust gene expression program in the mouse intestinal epithelium on aging. J Kazakevych, E Stoyanova, A Liebert, P Varga-Weisz. Scientific reports 9 (1), 1-8, 2019. [Google Scholar]
15. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. R Fellows, J Denizot, C Stellato, A Cuomo, P Jain, E Stoyanova, S Balázsi, et al. Nature communications 9 (1), 1-15, 2018. [Google Scholar]
16. In vitro Enzymatic Assays of Histone Decrotonylation on Recombinant Histones. R Fellows, P Varga-Weisz. Bio-protocol 8 (14), e2924-e2924, 2018. [Google Scholar]
2. Does chromatin function as a metabolite reservoir?. VD Nirello, DR de Paula, NVP Araújo, PD Varga-Weisz. Trends in Biochemical Sciences, 2022. [Google Scholar]
3. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice. PB Rodrigues, GF Gomes, MKSC Angelim, GF Souza, SP Muraro, et al. Cells 11 (16), 2572, 2022. [Google Scholar]
4. Host lung microbiota promotes malaria-associated acute respiratory distress syndrome. D Mukherjee, ÂF Chora, JC Lone, RS Ramiro, B Blankenhaus, K Serre, et al. Nature communications 13 (1), 1-14, 2022. [Google Scholar]
5. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. LB Pascoal, PB Rodrigues, LM Genaro, ABSP Gomes, et al. Gut Microbes 13 (1), 1-9, 2021. [Google Scholar]
6. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. LP Pral, JL Fachi, RO Corrêa, M Colonna, MAR Vinolo. Trends in Immunology 42 (7), 604-621, 2021. [Google Scholar]
7. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. JL Fachi, LP Pral, JAC Dos Santos, AC Codo, S de Oliveira, JS Felipe, et al. Mucosal immunology 14 (4), 828-841, 2021. [Google Scholar]
8. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. JL Fachi, C Sécca, PB Rodrigues, FCP Mato, B Di Luccia, JS Felipe, et al. Journal of Experimental Medicine 217 (3), 2020. [Google Scholar]
9. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. R Fellows, P Varga-Weisz. Molecular metabolism 38, 100925, 2020. [Google Scholar]
10. Tributyrin attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. FT Sato, YA Yap, AR Crisma, M Portovedo, GM Murata, SM Hirabara, et al. Cells 9 (9), 2007, 2020. [Google Scholar]
11. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. J Kazakevych, J Denizot, A Liebert, M Portovedo, M Mosavie, P Jain, et al. Genome biology 21 (1), 1-20, 2020. [Google Scholar]
12. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. KH Antunes, JL Fachi, R de Paula, EF da Silva, LP Pral, AÁ Dos Santos, et al. Nature communications 10 (1), 1-17, 2019. [Google Scholar]
13. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. JL Fachi, J de Souza Felipe, LP Pral, BK da Silva, RO Corrêa, et al. Cell reports 27 (3), 750-761. e7, 2019. [Google Scholar]
14. Transcriptome analysis identifies a robust gene expression program in the mouse intestinal epithelium on aging. J Kazakevych, E Stoyanova, A Liebert, P Varga-Weisz. Scientific reports 9 (1), 1-8, 2019. [Google Scholar]
15. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. R Fellows, J Denizot, C Stellato, A Cuomo, P Jain, E Stoyanova, S Balázsi, et al. Nature communications 9 (1), 1-15, 2018. [Google Scholar]
16. In vitro Enzymatic Assays of Histone Decrotonylation on Recombinant Histones. R Fellows, P Varga-Weisz. Bio-protocol 8 (14), e2924-e2924, 2018. [Google Scholar]
OTHER
17. SARS-CoV-2 uses CD4 to infect T helper lymphocytes. GG Davanzo, AC Codo, NS Brunetti, V Boldrini, TL Knittel, LB Monterio, et al. MedRxiv, 2020. [Google Scholar]
18. Interleukin-17 acts in the hypothalamus reducing food intake. G Nogueira, C Solon, RS Carraro, DF Engel, AF Ramalho, et al. Brain, behavior, and immunity 87, 272-285, 2020. [Google Scholar]
19. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. AL Rocha, TI de Lima, GP de Souza, RO Corrêa, DL Ferrucci, et al. Science advances 6 (49), eabc6250, 2020. [Google Scholar]
20. Adequate placental sampling for the diagnosis and characterization of placental infection by Zika virus. EM Venceslau, JPS Guida, GM Nobrega, AP Samogim, PL Parise, et al. Frontiers in microbiology 11, 112, 2020. [Google Scholar]
21. The in vivo toxicological profile of cationic solid lipid nanoparticles. MCP Mendonça, A Radaic, F Garcia-Fossa, MA da Cruz-Höfling, et al. Drug delivery and translational research 10 (1), 34-42, 2020. [Google Scholar]
22. 12-HETE is a regulator of PGE2 production via COX-2 expression induced by a snake venom group IIA phospholipase A2 in isolated peritoneal macrophages. V Moreira, JM Gutiérrez, B Lomonte, MAR Vinolo, R Curi, G Lambeau, et al. Chemico-biological interactions 317, 108903, 2020. [Google Scholar]
23. Effect of short chain fatty acids on age-related disorders. MF Fernandes, S Oliveira, M Portovedo, PB Rodrigues, MAR Vinolo. Reviews on New Drug Targets in Age-Related Disorders, 85-105, 2020. [Google Scholar]
24. TAM and TIM receptors mRNA expression in Zika virus infected placentas. GM Nobrega, AP Samogim, PL Parise, EM Venceslau, JPS Guida, et al. Placenta 101, 204-207, 2020. [Google Scholar]
25. Oropouche Virus Infects, Persists and Induces IFN Response in Human Peripheral Blood Mononuclear Cells as Identified by RNA PrimeFlow™ and qRT-PCR Assays. M Ribeiro Amorim, M Cornejo Pontelli, G Fabiano de Souza, et al. Viruses 12 (7), 785, 2020. [Google Scholar]
26. Long-term increase of insulin secretion in mice subjected to pregnancy and lactation. JM Vicente, JC Santos-Silva, CJ Teixeira, DN de Souza, JF Vettorazzi, et al. Endocrine Connections 9 (4), 299-308, 2020. [Google Scholar]
27. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic‐and GPR109a‐mediated mechanisms. RJF Felizardo, DC de Almeida, RL Pereira, IKM Watanabe, NTS Doimo, et al. The FASEB Journal 33 (11), 11894-11908, 2019. [Google Scholar]
28. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. CC Montalvany-Antonucci, LF Duffles, JAA de Arruda, MC Zicker, et al. Bone 125, 112-121, 2019. [Google Scholar]
29. Immune response mediated by Th1/IL-17/caspase-9 promotes evolution of periodontal disease. MEL Sommer, RA Dalia, AVB Nogueira, JA Cirelli, MAR Vinolo, JL Fachi, et al. Archives of Oral Biology 97, 77-84, 2019. [Google Scholar]
30. Oral administration of EPA-rich oil impairs collagen reorganization due to elevated production of IL-10 during skin wound healing in mice. B Burger, C Kühl, T Candreva, RS Cardoso, JR Silva, BG Castelucci, et al. Scientific reports 9 (1), 1-13, 2019. [Google Scholar]
31. A SUV39H1-low chromatin state characterises and promotes migratory properties of cervical cancer cells. C Rodrigues, C Pattabiraman, A Vijaykumar, R Arora, SM Narayana, et al. Experimental Cell Research 378 (2), 206-216, 2019. [Google Scholar]
32. Regulation of immune cell function by short chain fatty acids and their impact on arthritis. AT Vieira, MAR Vinolo. Bioactive Food as Dietary Interventions for Arthritis and Related …, 2019. [Google Scholar]
33. Docosahexaenoic acid slows inflammation resolution and impairs the quality of healed skin tissue. T Candreva, CMC Kühl, B Burger, MBP Dos Anjos, MA Torsoni, et al. Clinical Science 133 (22), 2345-2360, 2019. [Google Scholar]
34. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. SP Muraro, GF De Souza, SW Gallo, BK Da Silva, SD De Oliveira, et al. Scientific reports 8 (1), 1-12, 2018. [Google Scholar]
35. The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of . I Galvão, LP Tavares, RO Corrêa, JL Fachi, VM Rocha, M Rungue, et al. Frontiers in immunology 9, 142, 2018. [Google Scholar]
36. Use of gas chromatography to quantify short chain fatty acids in the serum, colonic luminal content and feces of mice. WR Ribeiro, MAR Vinolo, LA Calixto, CM Ferreira. Bio-protocol 8 (22), e3089-e3089, 2018. [Google Scholar]
37. Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. H Koohy, DJ Bolland, LS Matheson, S Schoenfelder, C Stellato, A Dimond, et al. Genome biology 19 (1), 1-24, 2018. [Google Scholar]
38. Efficient detection of Zika virus RNA in patients’ blood from the 2016 outbreak in Campinas, Brazil. CC Judice, JJL Tan, PL Parise, YW Kam, GP Milanez, JA Leite, et al. Scientific reports 8 (1), 1-7, 2018. [Google Scholar]
39. A Suv39H1-low chromatin state drives migratory cell populations in cervical cancers. C Rodrigues, C Pattabiraman, SM Narayana, RV Kumar, D Notani, et al. bioRxiv, 241398, 2018. [Google Scholar]
40. PO-170 A Suv39H1-low chromatin state drives migratory cell populations in cervical cancers. C Rodrigues, C Pattabiraman, SM Narayana, RV Kumar, D Notani, et al. ESMO Open 3, A87-A88, 2018. [Google Scholar]
41. Dietary fiber and the short‐chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. AT Vieira, I Galvão, LM Macia, EM Sernaglia, MAR Vinolo, CC Garcia, et al. Journal of leukocyte biology 101 (1), 275-284, 2017. [Google Scholar]
42. Specific biomarkers associated with neurological complications and congenital central nervous system abnormalities from Zika virus–infected patients in Brazil. YW Kam, JA Leite, FM Lum, JJL Tan, B Lee, CC Judice, DAT Teixeira, et al. The Journal of infectious diseases 216 (2), 172-181, 2017. [Google Scholar]
43. Bacterial short‐chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. RO Corrêa, A Vieira, EM Sernaglia, M Lancellotti, AT Vieira, et al. Cellular microbiology 19 (7), e12720, 2017. [Google Scholar]
44. Serum metabolic alterations upon Zika infection. CFOR Melo, J Delafiori, DN de Oliveira, TM Guerreiro, CZ Esteves, et al. Frontiers in microbiology 8, 1954, 2017. [Google Scholar]
45. Short-Chain Fatty Acids, G Protein-Coupled Receptors, and Immune Cells. JL Fachi, RO Corrêa, FT Sato, AT Vieira, HG Rodrigues, MAR Vinolo. Nutrition, Immunity, and Infection, 279-294, 2017. [Google Scholar]
46. Regulation of immune cell function by short‐chain fatty acids. R Corrêa‐Oliveira, JL Fachi, A Vieira, FT Sato, MAR Vinolo. Clinical & translational immunology 5 (4), e73, 2016. [Google Scholar]
47. Fatty acids as modulators of neutrophil recruitment, function and survival. HG Rodrigues, FT Sato, R Curi, MAR Vinolo. European journal of pharmacology 785, 50-58, 2016. [Google Scholar]
48. Reduced graphene oxide: nanotoxicological profile in rats. MCP Mendonça, ES Soares, MB de Jesus, HJ Ceragioli, SP Irazusta, et al. Journal of nanobiotechnology 14 (1), 1-13, 2016. [Google Scholar]
49. Oral administration of linoleic acid induces new vessel formation and improves skin wound healing in diabetic rats. HG Rodrigues, MAR Vinolo, FT Sato, J Magdalon, CMC Kuhl, et al. PloS one 11 (10), e0165115, 2016. [Google Scholar]
50. Gut bacteria products prevent AKI induced by ischemia-reperfusion. V Andrade-Oliveira, MT Amano, M Correa-Costa, A Castoldi, et al. Journal of the American Society of Nephrology 26 (8), 1877-1888, 2015. [Google Scholar]
51. ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. HS Sun, DM Damez-Werno, KN Scobie, NY Shao, C Dias, J Rabkin, et al. Nature medicine 21 (10), 1146-1153, 2015. [Google Scholar]
52. TLR4 expression in bone marrow-derived cells is both necessary and sufficient to produce the insulin resistance phenotype in diet-induced obesity. DS Razolli, JC Moraes, J Morari, RF Moura, MA Vinolo, LA Velloso. Endocrinology 156 (1), 103-113, 2015. [Google Scholar]
53. A new phosphate-starvation response in fission yeast requires the endocytic function of myosin I. E Petrini, V Baillet, J Cridge, CJ Hogan, C Guillaume, H Ke, E Brandetti, et al. Journal of Cell Science 128 (20), 3707-3713, 2015. [Google Scholar]
54. Funções biológicas dos ácidos agraxos. R Gorjão, FRM Adulkader, SM Hirabara, FT Sato, MAR Vinolo. Ácidos graxos na saúde e na doença: influência da genética, nutrição …, 2015. [Google Scholar]
55. The central role of the gut microbiota in chronic inflammatory diseases. CM Ferreira, AT Vieira, MAR Vinolo, FA Oliveira, R Curi, FS Martins. Journal of immunology research 2014, 2014. [Google Scholar]
56. An Asp49 phospholipase A2 from snake venom induces cyclooxygenase-2 expression and prostaglandin E2 production via activation of NF-κB, p38MAPK, and PKC in macrophages. V Moreira, B Lomonte, MAR Vinolo, R Curi, JM Gutiérrez, C Teixeira. Mediators of Inflammation 2014, 2014. [Google Scholar]
57. Chromatin remodeling: a collaborative effort. PD Varga-Weisz. Nature Structural & Molecular Biology 21 (1), 14-16, 2014. [Google Scholar]
58. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. MCR Cunha, FS Lima, MAR Vinolo, A Hastreiter, R Curi, P Borelli, et al. PLoS One 8 (3), e58872, 2013. [Google Scholar]
59. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation. E Hatanaka, A Dermargos, AE Hirata, MAR Vinolo, AR Carpinelli, et al. PloS one 8 (4), e58626, 2013. [Google Scholar]
60. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. VA Paschoal, MAR Vinolo, AR Crisma, J Magdalon, R Curi. Lipids 48 (2), 93-103, 2013. [Google Scholar]
61. The effect of mate tea (. MC Borges, MAR Vinolo, K Nakajima, IA de Castro, DHM Bastos, P Borelli, et al. International Journal of Food Sciences and Nutrition 64 (5), 561-569, 2013. [Google Scholar]
62. High-fat diet blunts activation of the nuclear factor-κB signaling pathway in lipopolysaccharide-stimulated peritoneal macrophages of Wistar rats. MC Borges, MAR Vinolo, AR Crisma, RA Fock, P Borelli, J Tirapegui, et al. Nutrition 29 (2), 443-449, 2013. [Google Scholar]
63. A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways …. V Moreira, PCM de Castro Souto, MAR Vinolo, B Lomonte, JM Gutiérrez, et al. European journal of pharmacology 708 (1-3), 68-79, 2013. [Google Scholar]
64. Modulation of inflammatory and immune responses by short-chain fatty acids. MAR Vinolo, HG Rodrigues, RT Nachbar, R Curi. Diet, Immunity and Inflammation, 435-458, 2013. [Google Scholar]
65. Effect of glutamine supplementation and resistive training in signaling pathways of protein synthesis and degradation in rat skeletal muscle. TC Pithon‐Curi, CF Rodrigues Jr, LGO de Sousa, DA Vasconcelos, et al. The FASEB Journal 27, lb719-lb719, 2013. [Google Scholar]
66. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. AR Martins, RT Nachbar, R Gorjao, MA Vinolo, WT Festuccia, et al. Lipids in health and disease 11 (1), 1-11, 2012. [Google Scholar]
67. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. MAR Vinolo, HG Rodrigues, WT Festuccia, AR Crisma, VS Alves, et al. American Journal of Physiology-Endocrinology and Metabolism 303 (2), E272-E282, 2012. [Google Scholar]
68. Molecular targets related to inflammation and insulin resistance and potential interventions. SM Hirabara, R Gorjao, MA Vinolo, AC Rodrigues, RT Nachbar, R Curi. Journal of Biomedicine and Biotechnology 2012, 2012. [Google Scholar]
69. Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. HG Rodrigues, MAR Vinolo, J Magdalon, K Vitzel, RT Nachbar, et al. Journal of Investigative Dermatology 132 (1), 208-215, 2012. [Google Scholar]
70. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase. HA Stefani, K Gueogjan, F Manarin, SHP Farsky, J Zukerman-Schpector, et al. European journal of medicinal chemistry 58, 117-127, 2012. [Google Scholar]
71. G-protein-coupled receptors as fat sensors. MAR Vinolo, SM Hirabara, R Curi. Current Opinion in Clinical Nutrition & Metabolic Care 15 (2), 112-116, 2012. [Google Scholar]
72. Oral administration of oleic or linoleic acids modulates the production of inflammatory mediators by rat macrophages. J Magdalon, MAR Vinolo, HG Rodrigues, VA Paschoal, RP Torres, et al. Lipids 47 (8), 803-812, 2012. [Google Scholar]
73. SWI/SNF-Like Chromatin Remodeling Factor Fun30 Supports Point Centromere Function in . M Durand-Dubief, WR Will, E Petrini, D Theodorou, RR Harris, et al. Public Library of Science 8 (9), e1002974, 2012. [Google Scholar]
74. Sunflower oil supplementation has proinflammatory effects and does not reverse insulin resistance in obesity induced by high-fat diet in C57BL/6 mice. LN Masi, AR Martins, JCR Neto, CL Amaral, AR Crisma, MAR Vinolo, et al. Journal of Biomedicine and Biotechnology 2012, 2012. [Google Scholar]
75. Activation of survival and apoptotic signaling pathways in lymphocytes exposed to palmitic acid. HK Takahashi, TD Cambiaghi, AD Luchessi, SM Hirabara, MAR Vinolo, et al. Journal of cellular physiology 227 (1), 339-350, 2012. [Google Scholar]
76. The effects of palmitic acid on nitric oxide production by rat skeletal muscle: mechanism via superoxide and iNOS activation. RH Lambertucci, CG Leandro, MA Vinolo, RT Nachbar, et al. Cellular Physiology and Biochemistry 30 (5), 1169-1180, 2012. [Google Scholar]
77. Molecular targets related to inflammation and insulin resistance and potential interventions. SM Hirabara, R Gorjão, MA Vinolo, AC Rodrigues, RT Nachbar, R Curi. Journal of Biomedicine and Biotechnology 2012 (379024), 1-16, 2012. [Google Scholar]
78. Impairment of the hematological response and interleukin-1β production in protein-energy malnourished mice after endotoxemia with lipopolysaccharide. RA Fock, MAR Vinolo, SL Blatt, P Borelli. Brazilian Journal of Medical and Biological Research 45, 1163-1171, 2012. [Google Scholar]
79. Regulation of inflammation by short chain fatty acids. MAR Vinolo, HG Rodrigues, RT Nachbar, R Curi. Nutrients 3 (10), 858-876, 2011. [Google Scholar]
80. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. MAR Vinolo, HG Rodrigues, E Hatanaka, FT Sato, SC Sampaio, R Curi. The Journal of nutritional biochemistry 22 (9), 849-855, 2011. [Google Scholar]
81. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. MAR Vinolo, GJ Ferguson, S Kulkarni, G Damoulakis, K Anderson, et al. PloS one 6 (6), e21205, 2011. [Google Scholar]
82. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. SP Rowbotham, L Barki, A Neves-Costa, F Santos, W Dean, N Hawkes, et al. Molecular cell 42 (3), 285-296, 2011. [Google Scholar]
83. Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication. JE Mermoud, SP Rowbotham, PD Varga-Weisz. Cell cycle 10 (23), 4017-4025, 2011. [Google Scholar]
84. Hydroquinone stimulates inflammatory functions in microvascular endothelial cells via NF‐κB nuclear activation. CB Hebeda, FJ Pinedo, MAR Vinolo, R Curi, SHP Farsky. Basic & clinical pharmacology & toxicology 109 (5), 372-380, 2011. [Google Scholar]
85. Moderate exercise improves leucocyte function and decreases inflammation in diabetes. MF Belotto, J Magdalon, HG Rodrigues, MAR Vinolo, R Curi, et al. Clinical & Experimental Immunology 162 (2), 237-243, 2010. [Google Scholar]
86. The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a β2 integrin-dependent pathway. CRA Valois, JM Braz, ES Nunes, MAR Vinolo, ECD Lima, R Curi, et al. Biomaterials 31 (2), 366-374, 2010. [Google Scholar]
87. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. HG Rodrigues, MAR Vinolo, J Magdalon, H Fujiwara, DMH Cavalcanti, et al. Lipids 45 (9), 809-819, 2010. [Google Scholar]
88. Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism. CJ Hogan, S Aligianni, M Durand-Dubief, J Persson, WR Will, J Webster, et al. Molecular and cellular biology 30 (3), 657-674, 2010. [Google Scholar]
89. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages. RA Fock, MM Rogero, MAR Vinolo, R Curi, MC Borges, P Borelli. Inflammation 33 (2), 101-109, 2010. [Google Scholar]
90. Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages. MM Rogero, P Borelli, RA Fock, MC Borges, MAR Vinolo, R Curi, et al. Amino Acids 39 (2), 435-441, 2010. [Google Scholar]
91. Neutrophils: lifespan, functions and roles in disease. F Dimitriadis, M Saito, P Alonso-Fernández, I Maté, M De la Fuente, et al. NOVA Publishers, 2010. [Google Scholar]
92. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. MAR Vinolo, HG Rodrigues, E Hatanaka, CB Hebeda, SHP Farsky, R Curi. Clinical science 117 (9), 331-338, 2009. [Google Scholar]
93. Effects of short chain fatty acids on effector mechanisms of neutrophils. MAR Vinolo, E Hatanaka, RH Lambertucci, P Newsholme, R Curi. Cell Biochemistry and Function: Cellular biochemistry and its modulation by …, 2009. [Google Scholar]
94. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. A Neves-Costa, WR Will, AT Vetter, JR Miller, P Varga-Weisz. PloS one 4 (12), e8111, 2009. [Google Scholar]
95. Microcystins-LA,-YR, and-LR action on neutrophil migration. P Kujbida, E Hatanaka, MAR Vinolo, K Waismam, et al. Biochemical and Biophysical Research Communications 382 (1), 9-14, 2009. [Google Scholar]
96. Glutamine in vitro supplementation decreases glucose utilization by the glycolytic pathway in LPS-activated peritoneal macrophages. MM Rogero, MC Borges, RA Fock, AD Ramos, IS Pires, MA Vinolo, R Curi, et al. ANNALS OF NUTRITION AND METABOLISM 55, 455-455, 2009. [Google Scholar]
97. Protein-energy malnutrition modifies the production of interleukin-10 in response to lipopolysaccharide (LPS) in a murine model. RA Fock, MAR Vinolo, AR Crisma, K Nakajima, MM Rogero, P Borelli. Journal of nutritional science and vitaminology 54 (5), 371-377, 2008. [Google Scholar]
98. Dietary glutamine supplementation increases the activity of peritoneal macrophages and hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. MM Rogero, J Tirapegui, MAR Vinolo, MC Borges, IA de Castro, ISO Pires, et al. The Journal of nutrition 138 (7), 1343-1348, 2008. [Google Scholar]
99. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. MM Rogero, P Borelli, MAR Vinolo, RA Fock, IS de Oliveira Pires, et al. Clinical nutrition 27 (3), 386-397, 2008. [Google Scholar]
100. blockade of Ca. CB Hebeda, SA Teixeira, MN Muscará, MAR Vinolo, R Curi, SBV de Mello, et al. Biochemical and biophysical research communications 377 (2), 694-698, 2008. [Google Scholar]
101. Malnourished mice display an impaired hematologic response to granulocyte colony-stimulating factor administration. MAR Vinolo, AR Crisma, K Nakajima, MM Rogero, RA Fock, P Borelli. Nutrition research 28 (11), 791-797, 2008. [Google Scholar]
102. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-α in response to …. RA Fock, MAR Vinolo, VMS Rocha, LC de Sá Rocha, P Borelli. Cytokine 40 (2), 105-114, 2007. [Google Scholar]
103. The regulation of ATP-dependent nucleosome remodelling factors. C Hogan, P Varga-Weisz. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 618 (1 …, 2007. [Google Scholar]
104. Protein-energy malnutrition alters histological and ultrastructural characteristics of the bone marrow and decreases haematopoiesis in adult mice. JG Xavier, ME Favero, MAR Vinolo, MM Rogero, MLZ Dagli, et al. Histology and histopathology, 2007. [Google Scholar]
105. ATP-dependent chromatin remodelling. P Choudhary, P Varga-Weisz. Chromatin and Disease, 29-44, 2007. [Google Scholar]
106. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. PD Varga-Weisz, PB Becker. Current opinion in genetics & development 16 (2), 151-156, 2006. [Google Scholar]
107. The roles of chromatin remodelling factors in replication. A Neves-Costa, P Varga-Weisz. Chromatin Dynamics in Cellular Function, 91-107, 2006. [Google Scholar]
108. Chromatin-remodelling factors and the maintenance of transcriptional states through DNA replication. SGE Roberts, ROJ Weinzierl, RJ White, S Aligianni, P Varga-Weisz. Biochemical Society Symposia 73, 97-108, 2006. [Google Scholar]
109. Chromatin remodelling by WSTF-ISWI at the replication site: opening a window of opportunity for epigenetic inheritance?. RA Poot, L Bozhenok, DLC Berg, N Hawkes, PD Varga-Weisz. Cell Cycle 4 (4), 543-546, 2005. [Google Scholar]
110. Chromatin remodeling factors and DNA replication. P Varga-Weisz. Epigenetics and chromatin, 1-30, 2005. [Google Scholar]
111. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. RA Poot, L Bozhenok, DLC van den Berg, S Steffensen, F Ferreira, et al. Nature cell biology 6 (12), 1236-1244, 2004. [Google Scholar]
112. The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF. I Kukimoto, S Elderkin, M Grimaldi, T Oelgeschläger, PD Varga-Weisz. Molecular cell 13 (2), 265-277, 2004. [Google Scholar]
113. Functional analysis of ISWI complexes in mammalian cells. L Bozhenok, R Poot, N Collins, P Varga-Weisz. Methods in enzymology 377, 376-389, 2004. [Google Scholar]
114. SATB1 targets chromatin remodelling to regulate genes over long distances. D Yasui, M Miyano, S Cai, P Varga-Weisz, T Kohwi-Shigematsu. Nature 419 (6907), 641-645, 2002. [Google Scholar]
115. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. N Collins, RA Poot, I Kukimoto, C García-Jiménez, G Dellaire, et al. Nature genetics 32 (4), 627-632, 2002. [Google Scholar]
116. WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci. L Bozhenok, PA Wade, P Varga-Weisz. The EMBO journal 21 (9), 2231-2241, 2002. [Google Scholar]
117. A mark in the core: silence no more!. PD Varga-Weisz, JZ Dalgaard. Molecular cell 9 (6), 1154-1156, 2002. [Google Scholar]
118. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. A Eberharter, S Ferrari, G Längst, T Straub, A Imhof, P Varga-Weisz, et al. The EMBO journal 20 (14), 3781-3788, 2001. [Google Scholar]
119. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. P Varga-Weisz. Oncogene 20 (24), 3076-3085, 2001. [Google Scholar]
120. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. RA Poot, G Dellaire, BB Hülsmann, MA Grimaldi, DFV Corona, PB Becker, et al. The EMBO journal 19 (13), 3377-3387, 2000. [Google Scholar]
121. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). DFV Corona, A Eberharter, A Budde, R Deuring, S Ferrari, P Varga-Weisz, et al. The EMBO journal 19 (12), 3049-3059, 2000. [Google Scholar]
122. Analysis of modulators of chromatin structure in Drosophila. PD Varga-Weisz, EJ Bonte, PB Becker. Methods in enzymology 304, 742-757, 1999. [Google Scholar]
123. Chromatin-remodeling factors: machines that regulate?. PD Varga-Weisz, PB Becker. Current opinion in cell biology 10 (3), 346-353, 1998. [Google Scholar]
124. In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. V Alexiadis, PD Varga-Weisz, E Bonte, PB Becker, C Gruss. The EMBO Journal 17 (12), 3428-3438, 1998. [Google Scholar]
125. Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. KI Miller, ME Cuff, WF Lang, P Varga-Weisz, KG Field, KE van Holde. Journal of molecular biology 278 (4), 827-842, 1998. [Google Scholar]
126. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. PD Varga-Weisz, M Wilm, E Bonte, K Dumas, M Mann, PB Becker. Nature 388 (6642), 598-602, 1997. [Google Scholar]
127. Energy‐dependent chromatin accessibility and nucleosome mobility in a cell‐free system.. PD Varga‐Weisz, TA Blank, PB Becker. The EMBO Journal 14 (10), 2209-2216, 1995. [Google Scholar]
128. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro.. G Wall, PD Varga‐Weisz, R Sandaltzopoulos, PB Becker. The EMBO Journal 14 (8), 1727-1736, 1995. [Google Scholar]
129. Transcription factor‐mediated chromatin remodelling: mechanisms and models. PD Varga-Weisz, PB Becker. FEBS letters 369 (1), 118-121, 1995. [Google Scholar]
130. Competition between linker histones and HMG1 for binding to four-way junction DNA: implications for transcription. P Vargaweisz, K Vanholde, J Zlatanova. Biochemical and biophysical research communications 203 (3), 1904-1911, 1994. [Google Scholar]
131. Preferential binding of histone H1 to four-way helical junction DNA.. P Varga-Weisz, K Van Holde, J Zlatanova. Journal of Biological Chemistry 268 (28), 20699-20700, 1993. [Google Scholar]
132. Expression of a TGFβ regulated, brain-specific mRNA in serum-free mouse embryo (SFME) cells. PV Weisz, M Solem, D Barnes. Neuroscience letters 154 (1-2), 153-156, 1993. [Google Scholar]
133. Characterization of human plasma growth inhibitory activity on serum-free mouse embryo cells. PDV Weisz, DW Barnes. In Vitro Cellular & Developmental Biology-Animal 29 (6), 512-516, 1993. [Google Scholar]
18. Interleukin-17 acts in the hypothalamus reducing food intake. G Nogueira, C Solon, RS Carraro, DF Engel, AF Ramalho, et al. Brain, behavior, and immunity 87, 272-285, 2020. [Google Scholar]
19. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. AL Rocha, TI de Lima, GP de Souza, RO Corrêa, DL Ferrucci, et al. Science advances 6 (49), eabc6250, 2020. [Google Scholar]
20. Adequate placental sampling for the diagnosis and characterization of placental infection by Zika virus. EM Venceslau, JPS Guida, GM Nobrega, AP Samogim, PL Parise, et al. Frontiers in microbiology 11, 112, 2020. [Google Scholar]
21. The in vivo toxicological profile of cationic solid lipid nanoparticles. MCP Mendonça, A Radaic, F Garcia-Fossa, MA da Cruz-Höfling, et al. Drug delivery and translational research 10 (1), 34-42, 2020. [Google Scholar]
22. 12-HETE is a regulator of PGE2 production via COX-2 expression induced by a snake venom group IIA phospholipase A2 in isolated peritoneal macrophages. V Moreira, JM Gutiérrez, B Lomonte, MAR Vinolo, R Curi, G Lambeau, et al. Chemico-biological interactions 317, 108903, 2020. [Google Scholar]
23. Effect of short chain fatty acids on age-related disorders. MF Fernandes, S Oliveira, M Portovedo, PB Rodrigues, MAR Vinolo. Reviews on New Drug Targets in Age-Related Disorders, 85-105, 2020. [Google Scholar]
24. TAM and TIM receptors mRNA expression in Zika virus infected placentas. GM Nobrega, AP Samogim, PL Parise, EM Venceslau, JPS Guida, et al. Placenta 101, 204-207, 2020. [Google Scholar]
25. Oropouche Virus Infects, Persists and Induces IFN Response in Human Peripheral Blood Mononuclear Cells as Identified by RNA PrimeFlow™ and qRT-PCR Assays. M Ribeiro Amorim, M Cornejo Pontelli, G Fabiano de Souza, et al. Viruses 12 (7), 785, 2020. [Google Scholar]
26. Long-term increase of insulin secretion in mice subjected to pregnancy and lactation. JM Vicente, JC Santos-Silva, CJ Teixeira, DN de Souza, JF Vettorazzi, et al. Endocrine Connections 9 (4), 299-308, 2020. [Google Scholar]
27. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic‐and GPR109a‐mediated mechanisms. RJF Felizardo, DC de Almeida, RL Pereira, IKM Watanabe, NTS Doimo, et al. The FASEB Journal 33 (11), 11894-11908, 2019. [Google Scholar]
28. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. CC Montalvany-Antonucci, LF Duffles, JAA de Arruda, MC Zicker, et al. Bone 125, 112-121, 2019. [Google Scholar]
29. Immune response mediated by Th1/IL-17/caspase-9 promotes evolution of periodontal disease. MEL Sommer, RA Dalia, AVB Nogueira, JA Cirelli, MAR Vinolo, JL Fachi, et al. Archives of Oral Biology 97, 77-84, 2019. [Google Scholar]
30. Oral administration of EPA-rich oil impairs collagen reorganization due to elevated production of IL-10 during skin wound healing in mice. B Burger, C Kühl, T Candreva, RS Cardoso, JR Silva, BG Castelucci, et al. Scientific reports 9 (1), 1-13, 2019. [Google Scholar]
31. A SUV39H1-low chromatin state characterises and promotes migratory properties of cervical cancer cells. C Rodrigues, C Pattabiraman, A Vijaykumar, R Arora, SM Narayana, et al. Experimental Cell Research 378 (2), 206-216, 2019. [Google Scholar]
32. Regulation of immune cell function by short chain fatty acids and their impact on arthritis. AT Vieira, MAR Vinolo. Bioactive Food as Dietary Interventions for Arthritis and Related …, 2019. [Google Scholar]
33. Docosahexaenoic acid slows inflammation resolution and impairs the quality of healed skin tissue. T Candreva, CMC Kühl, B Burger, MBP Dos Anjos, MA Torsoni, et al. Clinical Science 133 (22), 2345-2360, 2019. [Google Scholar]
34. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. SP Muraro, GF De Souza, SW Gallo, BK Da Silva, SD De Oliveira, et al. Scientific reports 8 (1), 1-12, 2018. [Google Scholar]
35. The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of . I Galvão, LP Tavares, RO Corrêa, JL Fachi, VM Rocha, M Rungue, et al. Frontiers in immunology 9, 142, 2018. [Google Scholar]
36. Use of gas chromatography to quantify short chain fatty acids in the serum, colonic luminal content and feces of mice. WR Ribeiro, MAR Vinolo, LA Calixto, CM Ferreira. Bio-protocol 8 (22), e3089-e3089, 2018. [Google Scholar]
37. Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. H Koohy, DJ Bolland, LS Matheson, S Schoenfelder, C Stellato, A Dimond, et al. Genome biology 19 (1), 1-24, 2018. [Google Scholar]
38. Efficient detection of Zika virus RNA in patients’ blood from the 2016 outbreak in Campinas, Brazil. CC Judice, JJL Tan, PL Parise, YW Kam, GP Milanez, JA Leite, et al. Scientific reports 8 (1), 1-7, 2018. [Google Scholar]
39. A Suv39H1-low chromatin state drives migratory cell populations in cervical cancers. C Rodrigues, C Pattabiraman, SM Narayana, RV Kumar, D Notani, et al. bioRxiv, 241398, 2018. [Google Scholar]
40. PO-170 A Suv39H1-low chromatin state drives migratory cell populations in cervical cancers. C Rodrigues, C Pattabiraman, SM Narayana, RV Kumar, D Notani, et al. ESMO Open 3, A87-A88, 2018. [Google Scholar]
41. Dietary fiber and the short‐chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. AT Vieira, I Galvão, LM Macia, EM Sernaglia, MAR Vinolo, CC Garcia, et al. Journal of leukocyte biology 101 (1), 275-284, 2017. [Google Scholar]
42. Specific biomarkers associated with neurological complications and congenital central nervous system abnormalities from Zika virus–infected patients in Brazil. YW Kam, JA Leite, FM Lum, JJL Tan, B Lee, CC Judice, DAT Teixeira, et al. The Journal of infectious diseases 216 (2), 172-181, 2017. [Google Scholar]
43. Bacterial short‐chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. RO Corrêa, A Vieira, EM Sernaglia, M Lancellotti, AT Vieira, et al. Cellular microbiology 19 (7), e12720, 2017. [Google Scholar]
44. Serum metabolic alterations upon Zika infection. CFOR Melo, J Delafiori, DN de Oliveira, TM Guerreiro, CZ Esteves, et al. Frontiers in microbiology 8, 1954, 2017. [Google Scholar]
45. Short-Chain Fatty Acids, G Protein-Coupled Receptors, and Immune Cells. JL Fachi, RO Corrêa, FT Sato, AT Vieira, HG Rodrigues, MAR Vinolo. Nutrition, Immunity, and Infection, 279-294, 2017. [Google Scholar]
46. Regulation of immune cell function by short‐chain fatty acids. R Corrêa‐Oliveira, JL Fachi, A Vieira, FT Sato, MAR Vinolo. Clinical & translational immunology 5 (4), e73, 2016. [Google Scholar]
47. Fatty acids as modulators of neutrophil recruitment, function and survival. HG Rodrigues, FT Sato, R Curi, MAR Vinolo. European journal of pharmacology 785, 50-58, 2016. [Google Scholar]
48. Reduced graphene oxide: nanotoxicological profile in rats. MCP Mendonça, ES Soares, MB de Jesus, HJ Ceragioli, SP Irazusta, et al. Journal of nanobiotechnology 14 (1), 1-13, 2016. [Google Scholar]
49. Oral administration of linoleic acid induces new vessel formation and improves skin wound healing in diabetic rats. HG Rodrigues, MAR Vinolo, FT Sato, J Magdalon, CMC Kuhl, et al. PloS one 11 (10), e0165115, 2016. [Google Scholar]
50. Gut bacteria products prevent AKI induced by ischemia-reperfusion. V Andrade-Oliveira, MT Amano, M Correa-Costa, A Castoldi, et al. Journal of the American Society of Nephrology 26 (8), 1877-1888, 2015. [Google Scholar]
51. ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. HS Sun, DM Damez-Werno, KN Scobie, NY Shao, C Dias, J Rabkin, et al. Nature medicine 21 (10), 1146-1153, 2015. [Google Scholar]
52. TLR4 expression in bone marrow-derived cells is both necessary and sufficient to produce the insulin resistance phenotype in diet-induced obesity. DS Razolli, JC Moraes, J Morari, RF Moura, MA Vinolo, LA Velloso. Endocrinology 156 (1), 103-113, 2015. [Google Scholar]
53. A new phosphate-starvation response in fission yeast requires the endocytic function of myosin I. E Petrini, V Baillet, J Cridge, CJ Hogan, C Guillaume, H Ke, E Brandetti, et al. Journal of Cell Science 128 (20), 3707-3713, 2015. [Google Scholar]
54. Funções biológicas dos ácidos agraxos. R Gorjão, FRM Adulkader, SM Hirabara, FT Sato, MAR Vinolo. Ácidos graxos na saúde e na doença: influência da genética, nutrição …, 2015. [Google Scholar]
55. The central role of the gut microbiota in chronic inflammatory diseases. CM Ferreira, AT Vieira, MAR Vinolo, FA Oliveira, R Curi, FS Martins. Journal of immunology research 2014, 2014. [Google Scholar]
56. An Asp49 phospholipase A2 from snake venom induces cyclooxygenase-2 expression and prostaglandin E2 production via activation of NF-κB, p38MAPK, and PKC in macrophages. V Moreira, B Lomonte, MAR Vinolo, R Curi, JM Gutiérrez, C Teixeira. Mediators of Inflammation 2014, 2014. [Google Scholar]
57. Chromatin remodeling: a collaborative effort. PD Varga-Weisz. Nature Structural & Molecular Biology 21 (1), 14-16, 2014. [Google Scholar]
58. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. MCR Cunha, FS Lima, MAR Vinolo, A Hastreiter, R Curi, P Borelli, et al. PLoS One 8 (3), e58872, 2013. [Google Scholar]
59. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation. E Hatanaka, A Dermargos, AE Hirata, MAR Vinolo, AR Carpinelli, et al. PloS one 8 (4), e58626, 2013. [Google Scholar]
60. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. VA Paschoal, MAR Vinolo, AR Crisma, J Magdalon, R Curi. Lipids 48 (2), 93-103, 2013. [Google Scholar]
61. The effect of mate tea (. MC Borges, MAR Vinolo, K Nakajima, IA de Castro, DHM Bastos, P Borelli, et al. International Journal of Food Sciences and Nutrition 64 (5), 561-569, 2013. [Google Scholar]
62. High-fat diet blunts activation of the nuclear factor-κB signaling pathway in lipopolysaccharide-stimulated peritoneal macrophages of Wistar rats. MC Borges, MAR Vinolo, AR Crisma, RA Fock, P Borelli, J Tirapegui, et al. Nutrition 29 (2), 443-449, 2013. [Google Scholar]
63. A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways …. V Moreira, PCM de Castro Souto, MAR Vinolo, B Lomonte, JM Gutiérrez, et al. European journal of pharmacology 708 (1-3), 68-79, 2013. [Google Scholar]
64. Modulation of inflammatory and immune responses by short-chain fatty acids. MAR Vinolo, HG Rodrigues, RT Nachbar, R Curi. Diet, Immunity and Inflammation, 435-458, 2013. [Google Scholar]
65. Effect of glutamine supplementation and resistive training in signaling pathways of protein synthesis and degradation in rat skeletal muscle. TC Pithon‐Curi, CF Rodrigues Jr, LGO de Sousa, DA Vasconcelos, et al. The FASEB Journal 27, lb719-lb719, 2013. [Google Scholar]
66. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. AR Martins, RT Nachbar, R Gorjao, MA Vinolo, WT Festuccia, et al. Lipids in health and disease 11 (1), 1-11, 2012. [Google Scholar]
67. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. MAR Vinolo, HG Rodrigues, WT Festuccia, AR Crisma, VS Alves, et al. American Journal of Physiology-Endocrinology and Metabolism 303 (2), E272-E282, 2012. [Google Scholar]
68. Molecular targets related to inflammation and insulin resistance and potential interventions. SM Hirabara, R Gorjao, MA Vinolo, AC Rodrigues, RT Nachbar, R Curi. Journal of Biomedicine and Biotechnology 2012, 2012. [Google Scholar]
69. Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. HG Rodrigues, MAR Vinolo, J Magdalon, K Vitzel, RT Nachbar, et al. Journal of Investigative Dermatology 132 (1), 208-215, 2012. [Google Scholar]
70. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase. HA Stefani, K Gueogjan, F Manarin, SHP Farsky, J Zukerman-Schpector, et al. European journal of medicinal chemistry 58, 117-127, 2012. [Google Scholar]
71. G-protein-coupled receptors as fat sensors. MAR Vinolo, SM Hirabara, R Curi. Current Opinion in Clinical Nutrition & Metabolic Care 15 (2), 112-116, 2012. [Google Scholar]
72. Oral administration of oleic or linoleic acids modulates the production of inflammatory mediators by rat macrophages. J Magdalon, MAR Vinolo, HG Rodrigues, VA Paschoal, RP Torres, et al. Lipids 47 (8), 803-812, 2012. [Google Scholar]
73. SWI/SNF-Like Chromatin Remodeling Factor Fun30 Supports Point Centromere Function in . M Durand-Dubief, WR Will, E Petrini, D Theodorou, RR Harris, et al. Public Library of Science 8 (9), e1002974, 2012. [Google Scholar]
74. Sunflower oil supplementation has proinflammatory effects and does not reverse insulin resistance in obesity induced by high-fat diet in C57BL/6 mice. LN Masi, AR Martins, JCR Neto, CL Amaral, AR Crisma, MAR Vinolo, et al. Journal of Biomedicine and Biotechnology 2012, 2012. [Google Scholar]
75. Activation of survival and apoptotic signaling pathways in lymphocytes exposed to palmitic acid. HK Takahashi, TD Cambiaghi, AD Luchessi, SM Hirabara, MAR Vinolo, et al. Journal of cellular physiology 227 (1), 339-350, 2012. [Google Scholar]
76. The effects of palmitic acid on nitric oxide production by rat skeletal muscle: mechanism via superoxide and iNOS activation. RH Lambertucci, CG Leandro, MA Vinolo, RT Nachbar, et al. Cellular Physiology and Biochemistry 30 (5), 1169-1180, 2012. [Google Scholar]
77. Molecular targets related to inflammation and insulin resistance and potential interventions. SM Hirabara, R Gorjão, MA Vinolo, AC Rodrigues, RT Nachbar, R Curi. Journal of Biomedicine and Biotechnology 2012 (379024), 1-16, 2012. [Google Scholar]
78. Impairment of the hematological response and interleukin-1β production in protein-energy malnourished mice after endotoxemia with lipopolysaccharide. RA Fock, MAR Vinolo, SL Blatt, P Borelli. Brazilian Journal of Medical and Biological Research 45, 1163-1171, 2012. [Google Scholar]
79. Regulation of inflammation by short chain fatty acids. MAR Vinolo, HG Rodrigues, RT Nachbar, R Curi. Nutrients 3 (10), 858-876, 2011. [Google Scholar]
80. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. MAR Vinolo, HG Rodrigues, E Hatanaka, FT Sato, SC Sampaio, R Curi. The Journal of nutritional biochemistry 22 (9), 849-855, 2011. [Google Scholar]
81. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. MAR Vinolo, GJ Ferguson, S Kulkarni, G Damoulakis, K Anderson, et al. PloS one 6 (6), e21205, 2011. [Google Scholar]
82. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. SP Rowbotham, L Barki, A Neves-Costa, F Santos, W Dean, N Hawkes, et al. Molecular cell 42 (3), 285-296, 2011. [Google Scholar]
83. Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication. JE Mermoud, SP Rowbotham, PD Varga-Weisz. Cell cycle 10 (23), 4017-4025, 2011. [Google Scholar]
84. Hydroquinone stimulates inflammatory functions in microvascular endothelial cells via NF‐κB nuclear activation. CB Hebeda, FJ Pinedo, MAR Vinolo, R Curi, SHP Farsky. Basic & clinical pharmacology & toxicology 109 (5), 372-380, 2011. [Google Scholar]
85. Moderate exercise improves leucocyte function and decreases inflammation in diabetes. MF Belotto, J Magdalon, HG Rodrigues, MAR Vinolo, R Curi, et al. Clinical & Experimental Immunology 162 (2), 237-243, 2010. [Google Scholar]
86. The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a β2 integrin-dependent pathway. CRA Valois, JM Braz, ES Nunes, MAR Vinolo, ECD Lima, R Curi, et al. Biomaterials 31 (2), 366-374, 2010. [Google Scholar]
87. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. HG Rodrigues, MAR Vinolo, J Magdalon, H Fujiwara, DMH Cavalcanti, et al. Lipids 45 (9), 809-819, 2010. [Google Scholar]
88. Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism. CJ Hogan, S Aligianni, M Durand-Dubief, J Persson, WR Will, J Webster, et al. Molecular and cellular biology 30 (3), 657-674, 2010. [Google Scholar]
89. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages. RA Fock, MM Rogero, MAR Vinolo, R Curi, MC Borges, P Borelli. Inflammation 33 (2), 101-109, 2010. [Google Scholar]
90. Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages. MM Rogero, P Borelli, RA Fock, MC Borges, MAR Vinolo, R Curi, et al. Amino Acids 39 (2), 435-441, 2010. [Google Scholar]
91. Neutrophils: lifespan, functions and roles in disease. F Dimitriadis, M Saito, P Alonso-Fernández, I Maté, M De la Fuente, et al. NOVA Publishers, 2010. [Google Scholar]
92. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. MAR Vinolo, HG Rodrigues, E Hatanaka, CB Hebeda, SHP Farsky, R Curi. Clinical science 117 (9), 331-338, 2009. [Google Scholar]
93. Effects of short chain fatty acids on effector mechanisms of neutrophils. MAR Vinolo, E Hatanaka, RH Lambertucci, P Newsholme, R Curi. Cell Biochemistry and Function: Cellular biochemistry and its modulation by …, 2009. [Google Scholar]
94. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. A Neves-Costa, WR Will, AT Vetter, JR Miller, P Varga-Weisz. PloS one 4 (12), e8111, 2009. [Google Scholar]
95. Microcystins-LA,-YR, and-LR action on neutrophil migration. P Kujbida, E Hatanaka, MAR Vinolo, K Waismam, et al. Biochemical and Biophysical Research Communications 382 (1), 9-14, 2009. [Google Scholar]
96. Glutamine in vitro supplementation decreases glucose utilization by the glycolytic pathway in LPS-activated peritoneal macrophages. MM Rogero, MC Borges, RA Fock, AD Ramos, IS Pires, MA Vinolo, R Curi, et al. ANNALS OF NUTRITION AND METABOLISM 55, 455-455, 2009. [Google Scholar]
97. Protein-energy malnutrition modifies the production of interleukin-10 in response to lipopolysaccharide (LPS) in a murine model. RA Fock, MAR Vinolo, AR Crisma, K Nakajima, MM Rogero, P Borelli. Journal of nutritional science and vitaminology 54 (5), 371-377, 2008. [Google Scholar]
98. Dietary glutamine supplementation increases the activity of peritoneal macrophages and hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. MM Rogero, J Tirapegui, MAR Vinolo, MC Borges, IA de Castro, ISO Pires, et al. The Journal of nutrition 138 (7), 1343-1348, 2008. [Google Scholar]
99. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. MM Rogero, P Borelli, MAR Vinolo, RA Fock, IS de Oliveira Pires, et al. Clinical nutrition 27 (3), 386-397, 2008. [Google Scholar]
100. blockade of Ca. CB Hebeda, SA Teixeira, MN Muscará, MAR Vinolo, R Curi, SBV de Mello, et al. Biochemical and biophysical research communications 377 (2), 694-698, 2008. [Google Scholar]
101. Malnourished mice display an impaired hematologic response to granulocyte colony-stimulating factor administration. MAR Vinolo, AR Crisma, K Nakajima, MM Rogero, RA Fock, P Borelli. Nutrition research 28 (11), 791-797, 2008. [Google Scholar]
102. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-α in response to …. RA Fock, MAR Vinolo, VMS Rocha, LC de Sá Rocha, P Borelli. Cytokine 40 (2), 105-114, 2007. [Google Scholar]
103. The regulation of ATP-dependent nucleosome remodelling factors. C Hogan, P Varga-Weisz. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 618 (1 …, 2007. [Google Scholar]
104. Protein-energy malnutrition alters histological and ultrastructural characteristics of the bone marrow and decreases haematopoiesis in adult mice. JG Xavier, ME Favero, MAR Vinolo, MM Rogero, MLZ Dagli, et al. Histology and histopathology, 2007. [Google Scholar]
105. ATP-dependent chromatin remodelling. P Choudhary, P Varga-Weisz. Chromatin and Disease, 29-44, 2007. [Google Scholar]
106. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. PD Varga-Weisz, PB Becker. Current opinion in genetics & development 16 (2), 151-156, 2006. [Google Scholar]
107. The roles of chromatin remodelling factors in replication. A Neves-Costa, P Varga-Weisz. Chromatin Dynamics in Cellular Function, 91-107, 2006. [Google Scholar]
108. Chromatin-remodelling factors and the maintenance of transcriptional states through DNA replication. SGE Roberts, ROJ Weinzierl, RJ White, S Aligianni, P Varga-Weisz. Biochemical Society Symposia 73, 97-108, 2006. [Google Scholar]
109. Chromatin remodelling by WSTF-ISWI at the replication site: opening a window of opportunity for epigenetic inheritance?. RA Poot, L Bozhenok, DLC Berg, N Hawkes, PD Varga-Weisz. Cell Cycle 4 (4), 543-546, 2005. [Google Scholar]
110. Chromatin remodeling factors and DNA replication. P Varga-Weisz. Epigenetics and chromatin, 1-30, 2005. [Google Scholar]
111. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. RA Poot, L Bozhenok, DLC van den Berg, S Steffensen, F Ferreira, et al. Nature cell biology 6 (12), 1236-1244, 2004. [Google Scholar]
112. The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF. I Kukimoto, S Elderkin, M Grimaldi, T Oelgeschläger, PD Varga-Weisz. Molecular cell 13 (2), 265-277, 2004. [Google Scholar]
113. Functional analysis of ISWI complexes in mammalian cells. L Bozhenok, R Poot, N Collins, P Varga-Weisz. Methods in enzymology 377, 376-389, 2004. [Google Scholar]
114. SATB1 targets chromatin remodelling to regulate genes over long distances. D Yasui, M Miyano, S Cai, P Varga-Weisz, T Kohwi-Shigematsu. Nature 419 (6907), 641-645, 2002. [Google Scholar]
115. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. N Collins, RA Poot, I Kukimoto, C García-Jiménez, G Dellaire, et al. Nature genetics 32 (4), 627-632, 2002. [Google Scholar]
116. WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci. L Bozhenok, PA Wade, P Varga-Weisz. The EMBO journal 21 (9), 2231-2241, 2002. [Google Scholar]
117. A mark in the core: silence no more!. PD Varga-Weisz, JZ Dalgaard. Molecular cell 9 (6), 1154-1156, 2002. [Google Scholar]
118. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. A Eberharter, S Ferrari, G Längst, T Straub, A Imhof, P Varga-Weisz, et al. The EMBO journal 20 (14), 3781-3788, 2001. [Google Scholar]
119. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. P Varga-Weisz. Oncogene 20 (24), 3076-3085, 2001. [Google Scholar]
120. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. RA Poot, G Dellaire, BB Hülsmann, MA Grimaldi, DFV Corona, PB Becker, et al. The EMBO journal 19 (13), 3377-3387, 2000. [Google Scholar]
121. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). DFV Corona, A Eberharter, A Budde, R Deuring, S Ferrari, P Varga-Weisz, et al. The EMBO journal 19 (12), 3049-3059, 2000. [Google Scholar]
122. Analysis of modulators of chromatin structure in Drosophila. PD Varga-Weisz, EJ Bonte, PB Becker. Methods in enzymology 304, 742-757, 1999. [Google Scholar]
123. Chromatin-remodeling factors: machines that regulate?. PD Varga-Weisz, PB Becker. Current opinion in cell biology 10 (3), 346-353, 1998. [Google Scholar]
124. In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. V Alexiadis, PD Varga-Weisz, E Bonte, PB Becker, C Gruss. The EMBO Journal 17 (12), 3428-3438, 1998. [Google Scholar]
125. Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. KI Miller, ME Cuff, WF Lang, P Varga-Weisz, KG Field, KE van Holde. Journal of molecular biology 278 (4), 827-842, 1998. [Google Scholar]
126. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. PD Varga-Weisz, M Wilm, E Bonte, K Dumas, M Mann, PB Becker. Nature 388 (6642), 598-602, 1997. [Google Scholar]
127. Energy‐dependent chromatin accessibility and nucleosome mobility in a cell‐free system.. PD Varga‐Weisz, TA Blank, PB Becker. The EMBO Journal 14 (10), 2209-2216, 1995. [Google Scholar]
128. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro.. G Wall, PD Varga‐Weisz, R Sandaltzopoulos, PB Becker. The EMBO Journal 14 (8), 1727-1736, 1995. [Google Scholar]
129. Transcription factor‐mediated chromatin remodelling: mechanisms and models. PD Varga-Weisz, PB Becker. FEBS letters 369 (1), 118-121, 1995. [Google Scholar]
130. Competition between linker histones and HMG1 for binding to four-way junction DNA: implications for transcription. P Vargaweisz, K Vanholde, J Zlatanova. Biochemical and biophysical research communications 203 (3), 1904-1911, 1994. [Google Scholar]
131. Preferential binding of histone H1 to four-way helical junction DNA.. P Varga-Weisz, K Van Holde, J Zlatanova. Journal of Biological Chemistry 268 (28), 20699-20700, 1993. [Google Scholar]
132. Expression of a TGFβ regulated, brain-specific mRNA in serum-free mouse embryo (SFME) cells. PV Weisz, M Solem, D Barnes. Neuroscience letters 154 (1-2), 153-156, 1993. [Google Scholar]
133. Characterization of human plasma growth inhibitory activity on serum-free mouse embryo cells. PDV Weisz, DW Barnes. In Vitro Cellular & Developmental Biology-Animal 29 (6), 512-516, 1993. [Google Scholar]